Genetic State-Space Search for Constrained Optimization Problems
نویسنده
چکیده
This paper introduces GSSS (Genetic State-Space Search). The integration of two general search paradigms — genetic search and state-space-search provides a general framework which can be applied to a large variety of search problems. Here, we show how GSSS solves constrained optimization problems (COPs). Basically, it searches for "promising search states" from which good solutions can be easily found. Domain knowledge in the form of constraints is used to limit the space to be searched. Interestingly, our approach allows the handling of constraints within genetic search at a general domain independent level. First, we introduce a genetic representation of search states. Next, we provide empirical results which compare the relative merit of the introduction of constraints during the generation of the initial population, during the fitness calculation, and during the application of genetic operators. Finally, we describe some extensions to our method which came about when applying it to factory floor scheduling problems.
منابع مشابه
CONSTRAINED BIG BANG-BIG CRUNCH ALGORITHM FOR OPTIMAL SOLUTION OF LARGE SCALE RESERVOIR OPERATION PROBLEM
A constrained version of the Big Bang-Big Crunch algorithm for the efficient solution of the optimal reservoir operation problems is proposed in this paper. Big Bang-Big Crunch (BB-BC) algorithm is a new meta-heuristic population-based algorithm that relies on one of the theories of the evolution of universe namely, the Big Bang and Big Crunch theory. An improved formulation of the algorithm na...
متن کاملConstrained Multi-Objective Optimization Problems in Mechanical Engineering Design Using Bees Algorithm
Many real-world search and optimization problems involve inequality and/or equality constraints and are thus posed as constrained optimization problems. In trying to solve constrained optimization problems using classical optimization methods, this paper presents a Multi-Objective Bees Algorithm (MOBA) for solving the multi-objective optimal of mechanical engineering problems design. In the pre...
متن کاملAn Evolutionary Algorithm Based on a Hybrid Multi-Attribute Decision Making Method for the Multi-Mode Multi-Skilled Resource-constrained Project Scheduling Problem
This paper addresses the multi-mode multi-skilled resource-constrained project scheduling problem. Activities of real world projects often require more than one skill to be accomplished. Besides, in many real-world situations, the resources are multi-skilled workforces. In presence of multi-skilled resources, it is required to determine the combination of workforces assigned to each activity. H...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993